skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hani, Zaher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A fundamental question in wave turbulence theory is to understand how the wave kinetic equation describes the long-time dynamics of its associated nonlinear dispersive equation. Formal derivations in the physics literature, dating back to the work of Peierls in 1928, suggest that such a kinetic description should hold (for well-prepared random data) at a large kinetic time scale $$T_{\mathrm {kin}} \gg 1$$ and in a limiting regime where the size L of the domain goes to infinity and the strength $$\alpha $$ of the nonlinearity goes to $$0$$ (weak nonlinearity). For the cubic nonlinear Schrödinger equation, $$T_{\mathrm {kin}}=O\left (\alpha ^{-2}\right )$$ and $$\alpha $$ is related to the conserved mass $$\lambda $$ of the solution via $$\alpha =\lambda ^2 L^{-d}$$ . In this paper, we study the rigorous justification of this monumental statement and show that the answer seems to depend on the particular scaling law in which the $$(\alpha , L)$$ limit is taken, in a spirit similar to how the Boltzmann–Grad scaling law is imposed in the derivation of Boltzmann’s equation. In particular, there appear to be two favourable scaling laws: when $$\alpha $$ approaches $$0$$ like $$L^{-\varepsilon +}$$ or like $$L^{-1-\frac {\varepsilon }{2}+}$$ (for arbitrary small $$\varepsilon $$ ), we exhibit the wave kinetic equation up to time scales $$O(T_{\mathrm {kin}}L^{-\varepsilon })$$ , by showing that the relevant Feynman-diagram expansions converge absolutely (as a sum over paired trees). For the other scaling laws, we justify the onset of the kinetic description at time scales $$T_*\ll T_{\mathrm {kin}}$$ and identify specific interactions that become very large for times beyond $$T_*$$ . In particular, the relevant tree expansion diverges absolutely there. In light of those interactions, extending the kinetic description beyond $$T_*$$ toward $$T_{\mathrm {kin}}$$ for such scaling laws seems to require new methods and ideas. 
    more » « less