- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Hani, Zaher (4)
-
Deng, Yu (2)
-
Guardia, Marcel (2)
-
Haus, Emanuele (2)
-
Maspero, Alberto (2)
-
Procesi, Michela (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Guardia, Marcel; Hani, Zaher; Haus, Emanuele; Maspero, Alberto; Procesi, Michela (, Journal of the European Mathematical Society)
-
Deng, Yu; Hani, Zaher (, Forum of Mathematics, Pi)Abstract A fundamental question in wave turbulence theory is to understand how the wave kinetic equation describes the long-time dynamics of its associated nonlinear dispersive equation. Formal derivations in the physics literature, dating back to the work of Peierls in 1928, suggest that such a kinetic description should hold (for well-prepared random data) at a large kinetic time scale $$T_{\mathrm {kin}} \gg 1$$ and in a limiting regime where the size L of the domain goes to infinity and the strength $$\alpha $$ of the nonlinearity goes to $$0$$ (weak nonlinearity). For the cubic nonlinear Schrödinger equation, $$T_{\mathrm {kin}}=O\left (\alpha ^{-2}\right )$$ and $$\alpha $$ is related to the conserved mass $$\lambda $$ of the solution via $$\alpha =\lambda ^2 L^{-d}$$ . In this paper, we study the rigorous justification of this monumental statement and show that the answer seems to depend on the particular scaling law in which the $$(\alpha , L)$$ limit is taken, in a spirit similar to how the Boltzmann–Grad scaling law is imposed in the derivation of Boltzmann’s equation. In particular, there appear to be two favourable scaling laws: when $$\alpha $$ approaches $$0$$ like $$L^{-\varepsilon +}$$ or like $$L^{-1-\frac {\varepsilon }{2}+}$$ (for arbitrary small $$\varepsilon $$ ), we exhibit the wave kinetic equation up to time scales $$O(T_{\mathrm {kin}}L^{-\varepsilon })$$ , by showing that the relevant Feynman-diagram expansions converge absolutely (as a sum over paired trees). For the other scaling laws, we justify the onset of the kinetic description at time scales $$T_*\ll T_{\mathrm {kin}}$$ and identify specific interactions that become very large for times beyond $$T_*$$ . In particular, the relevant tree expansion diverges absolutely there. In light of those interactions, extending the kinetic description beyond $$T_*$$ toward $$T_{\mathrm {kin}}$$ for such scaling laws seems to require new methods and ideas.more » « less
-
Guardia, Marcel; Hani, Zaher; Haus, Emanuele; Maspero, Alberto; Procesi, Michela (, Rendiconti Lincei - Matematica e Applicazioni)
An official website of the United States government
